The promise of artificial intelligence has captured our cultural imagination since at least the 1950s—inspiring computer scientists to create new and increasingly complex technologies, while also building excitement about the future among regular everyday consumers. What if we could explore the bottom of the ocean without taking any physical risks? Or ride around in driverless cars on intelligent roadways? While our understanding of AI—and what’s possible—has changed over the the past few decades, we have reason to believe that the age of artificial intelligence may finally be here. So, as a developer, what can you do to get started? This article will go over some basics of AI, and outline some tools and resources that may help.
First Things First—What Exactly is AI?
While there are a lot of different ways to think about AI and a lot of different techniques to approach it, the key to machine intelligence is that it must be able to sense, reason, and act, then adapt based on experience.
What Does AI Look Like Today?
These days, artificial intelligence is an umbrella term to represent any program that can sense, reason, act, and adapt. Two ways that developers are actually getting machines to do that are machine learning and deep learning.
AI in Action: A Machine Learning Workflow
As we discussed above, artificial intelligence is able to sense, reason, and act, then adapt based on experience. But what does that look like? Here is a general workflow for machine learning:
1. Data Acquisition—First, you need huge amounts of data. This data can be collected from any number of sources, including sensors in wearables and other objects, the cloud, and the Web.
2. Data Aggregation and Curation—Once the data is collected, data scientists will aggregate and label it (in the case of supervised machine learning).
3. Model Development—Next, the data is used to develop a model, which then gets trained for accuracy and optimized for performance.
4. Model Deployment and Scoring—The model is deployed in an application, where it is used to make predictions based on new data.
5. Update with New Data—As more data comes in, the model becomes even more refined and more accurate. For instance, as an autonomous car drives, the application pulls in real-time information through sensors, GPS, 360-degree video capture, and more, which it can then use to optimize future predictions.
Opportunities for AI Developers
One of most exciting things about AI is that it has the potential to revolutionize not just the computing industry, or the software industry, but really every industry that touches our lives. It will transform society in much the same way as the industrial revolution, the technical revolution, and the digital revolution altered every aspect of daily life. Intel provides the foundation, frameworks, and strategies to power artificial intelligence. And when it comes to deep learning and machine learning technologies, Intel can help developers deliver projects better, faster, and more cost-effectively.
For developers, the expansion of the AI field means that you have the potential to apply your interest and knowledge of AI toward an industry that you’re also interested in, like music or sports or healthcare. As you explore the world of AI, think about what else you find interesting, and how you’d like contribute to that field in a meaningful way. The ideas are limitless, but here are a few examples to get you thinking.
So, Where Should I Get Started? Intel Can Help.
Intel is supporting rapid innovation in artificial intelligence. The Intel Software Developer Zone for AI is a great starting point for finding community, tools, and training. Here are some specific links to get you started.
The topic of AI is incredibly deep, and we’ve only scratched the surface so far. Come back soon for more articles about what’s happening and how you can get involved.
For more such intel IoT resources and tools from Intel, please visit the Intel® Developer Zone
Source:https://software.intel.com/en-us/articles/how-to-get-started-as-a-developer-in-ai